YEAR 7 — LINES AND ANGLES

@whisto maths

Geometric reasoning

What do I need to be able to do?

By the end of this unit you should be able to:

- Understand/use the sum of angles at a point
- Understand/use the sum of angles on a straight line.
- Understand/use equality of vertically opposite anales
- Know and apply the sum of angles in a triangle
- Know and apply the sum of angles in a quadrilateral

Keywords

! Vertically Opposite: angles formed when two or more straight lines cross at a point.

Interior Ongles: angles inside the shape

Sum: total, add all the interior angles together

Convex Quadrilateral: a four-sided polygon where every interior angle is less than 180°

Concave Quadrilateral: a four-sided polygon where one interior angle exceeds 180°

Polygon: 0 2D shape made with straight lines

Scalene triangle: a triangle with all different sides and angles

I isosceles triangle: a triangle with two angles the same size and two angles the same size

I | Right-angled triangle: a triangle with a right angle

Sum of angles in triangles

Sum of interior angles in a triangle = 180°

Split up the problem into chunks and explain your reasoning at each point using angle notation

I Ongle DEF = 51° because it is a vertically opposite angle DEF = GEH

2. Triangle DEF is isosceles (triangle notation) \div EDF = EFD and the sum of interior angles is 180° $180^{\circ} - 51^{\circ} = 129^{\circ}$ $129^{\circ} \div 2 = 645^{\circ}$

Interior angles are those that make up

the perimeter (outline) of the shape

3. Ongle EDF = 64.5°

Keep working out clear and notes together

the same as two triangles: 180° + 180° = 360°