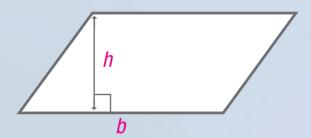
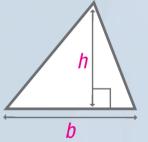


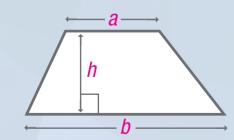

GCSE 9-1 MATHEMATICS FORMULAE SUITABLE FOR AQA AND EDEXCEL / FOUNDATION TIER

tutor2u

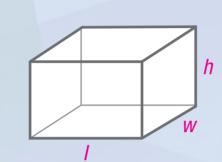

Formulae to Memorise

You will not be given these formulae in the exam

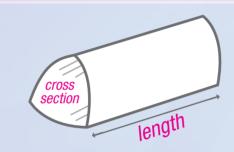

Areas


Area of a rectangle = $I \times w$

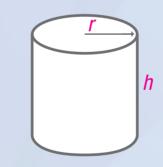
Area of a parallelogram = $b \times h$

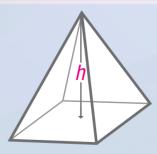


Area of a triangle = $\frac{1}{2}b \times h$

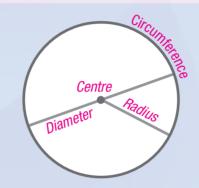


Area of a trapezium = $\frac{1}{2}(a + b) h$


Volumes

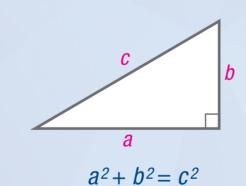

Volume of a cuboid = $I \times w \times h$

Volume of a prism = area of cross section × length



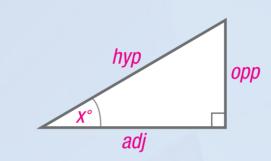
Volume of a cylinder = $\pi r^2 h$

Volume of a pyramid = $\frac{1}{3}$ × area of base × h


Circumference and Area of a Circle

Circumference of a circle = $2\pi r = \pi d$

Pythagoras' Theorem


Compound Measures

$$speed = \frac{distance}{time}$$

density =
$$\frac{\text{mass}}{\text{volume}}$$

pressure =
$$\frac{\text{force}}{\text{area}}$$

Trigonometry

$$\sin x = \frac{opp}{hyp}$$
, $\cos x = \frac{adj}{hyp}$, $\tan x = \frac{opp}{adj}$

Compound Interest*

Where *P* is the principal amount, *r* is the interest rate (as a percentage) over a given period and n is the number of times that the interest is compounded:

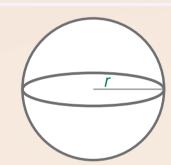
Total accrued =
$$P\left(1 + \frac{r}{100}\right)^n$$

Probability*

Where P(A) is the probability of outcome A and P(B) is the probability of outcome B:

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Formulae given in the Exam


You do not need to memorise these formulae

Volume and Surface Area

Curved surface area of a cone = πrI

Volume of a cone =
$$\frac{1}{3} \pi r^2 h$$

Surface area of a sphere = $4\pi r^2$

Volume of a sphere = $\frac{4}{3} \pi r^3$

Kinematics Formulae

Where a is constant acceleration, u is initial velocity, ν is final velocity, s is displacement from the position when t=0 and t is time taken:

$$v = u + at$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

Visit our website: