Topic/Skill	Definition/Tips	Example
1. Square Number	The number you get when you multiply a number by itself.	$\begin{gathered} 1,4,9,16,25,36,49,64,81,100,121, \\ 144,169,196,225 \ldots \\ 9^{2}=9 \times 9=81 \end{gathered}$
2. Square Root	The number you multiply by itself to get another number. The reverse process of squaring a number.	$\sqrt{36}=6$ because $6 \times 6=36$
3. Solutions to $x^{2}=\ldots$	Equations involving squares have two solutions, one positive and one negative.	Solve $x^{2}=25$ $x=5 \text { or } x=-5$ This can also be written as $x= \pm 5$
4. Cube Number	The number you get when you multiply a number by itself and itself again.	$\begin{aligned} & 1,8,27,64,125 \ldots \\ & 2^{3}=2 \times 2 \times 2=8 \end{aligned}$
5. Cube Root	The number you multiply by itself and itself again to get another number. The reverse process of cubing a number.	$\begin{array}{r} \sqrt[3]{125}=5 \\ \text { because } 5 \times 5 \times 5=125 \end{array}$
6. Powers of...	The powers of a number are that number raised to various powers.	The powers of 3 are: $\begin{aligned} & 3^{1}=3 \\ & 3^{2}=9 \\ & 3^{3}=27 \\ & 3^{4}=81 \text { etc. } \end{aligned}$
7. Multiplication Index Law	When multiplying with the same base (number or letter), add the powers. $a^{m} \times a^{n}=a^{m+n}$	$\begin{gathered} 7^{5} \times 7^{3}=7^{8} \\ a^{12} \times a=a^{13} \\ 4 x^{5} \times 2 x^{8}=8 x^{13} \end{gathered}$
8. Division Index Law	When dividing with the same base (number or letter), subtract the powers. $a^{m} \div a^{n}=a^{m-n}$	$\begin{gathered} 15^{7} \div 15^{4}=15^{3} \\ x^{9} \div x^{2}=x^{7} \\ 20 a^{11} \div 5 a^{3}=4 a^{8} \end{gathered}$
9. Brackets Index Laws	When raising a power to another power, multiply the powers together. $\left(a^{m}\right)^{n}=a^{m n}$	$\begin{gathered} \left(y^{2}\right)^{5}=y^{10} \\ \left(6^{3}\right)^{4}=6^{12} \\ \left(5 x^{6}\right)^{3}=125 x^{18} \end{gathered}$
10. Notable Powers	$\begin{gathered} p=p^{1} \\ p^{0}=1 \\ \hline \end{gathered}$	$99999^{0}=1$
11. Negative Powers	A negative power performs the reciprocal. $a^{-m}=\frac{1}{a^{m}}$	$3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}$
12. Fractional Powers	The denominator of a fractional power acts as a 'root'. The numerator of a fractional power acts as a normal power. $a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}$	$\begin{gathered} 27^{\frac{2}{3}}=(\sqrt[3]{27})^{2}=3^{2}=9 \\ \left(\frac{25}{16}\right)^{\frac{3}{2}}=\left(\frac{\sqrt{25}}{\sqrt{16}}\right)^{3}=\left(\frac{5}{4}\right)^{3}=\frac{125}{64} \end{gathered}$

