Topic/Skill	Definition/Tips	Example
1. Place Value	The value of where a digit is within a number.	In 726 , the value of the 2 is 20 , as it is in the 'tens' column.
2. Place Value Columns	The names of the columns that determine the value of each digit. The 'ones' column is also known as the 'units' column.	
3. Rounding	To make a number simpler but keep its value close to what it was. If the digit to the right of the rounding digit is less than 5 , round down. If the digit to the right of the rounding digit is 5 or more, round up.	74 rounded to the nearest ten is 70, because 74 is closer to 70 than 80 . 152,879 rounded to the nearest thousand is 153,000 .
4. Decimal Place	The position of a digit to the right of a decimal point.	In the number 0.372 , the 7 is in the second decimal place. 0.372 rounded to two decimal places is 0.37 , because the 2 tells us to round down. Careful with money - don’t write $£ 27.4$, instead write $£ 27.40$
5. Significant Figure	The significant figures of a number are the digits which carry meaning (ie. are significant) to the size of the number. The first significant figure of a number cannot be zero. In a number with a decimal, trailing zeros are not significant.	In the number 0.00821 , the first significant figure is the 8 . In the number 2.740, the 0 is not a significant figure. 0.00821 rounded to 2 significant figures is 0.0082 . 19357 rounded to 3 significant figures is 19400 . We need to include the two zeros at the end to keep the digits in the same place value columns.
6. Truncation	A method of approximating a decimal number by dropping all decimal places past a certain point without rounding.	$3.14159265 \ldots$ can be truncated to 3.1415 (note that if it had been rounded, it would become 3.1416)
7. Error Interval	A range of values that a number could have taken before being rounded or truncated. An error interval is written using inequalities, with a lower bound and an upper bound.	0.6 has been rounded to 1 decimal place. The error interval is: $0.55 \leq x<0.65$ The lower bound is 0.55 The upper bound is 0.65

	Note that the lower bound inequality can be 'equal to', but the upper bound cannot be 'equal to'.	
8. Estimate	To find something close to the correct answer.	An estimate for the height of a man is 1.8 metres.
9. Approximation	When using approximations to estimate the solution to a calculation, round each number in the calculation to 1 significant figure. \approx means 'approximately equal to'	$\frac{348+692}{0.526} \approx \frac{300+700}{0.5}=2000$ 'Note that dividing by 0.5 is the same as multiplying by 2 '
10. Rational Number	A number of the form $\frac{p}{q}$, where \boldsymbol{p} and \boldsymbol{q} are integers and $\boldsymbol{q} \neq \mathbf{0}$. A number that cannot be written in this form is called an 'irrational' number	$\frac{4}{9}, 6,-\frac{1}{3}, \sqrt{25}$ are examples of rational numbers. $\pi, \sqrt{2}$ are examples of an irrational numbers.
11. Surd	The irrational number that is a root of a positive integer, whose value cannot be determined exactly. Surds have infinite non-recurring decimals.	$\sqrt{2}$ is a surd because it is a root which cannot be determined exactly. $\sqrt{2}=1.41421356 \ldots$ which never repeats.
12. Rules of Surds	$\begin{gathered} \sqrt{a b}=\sqrt{a} \times \sqrt{b} \\ \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}} \\ a \sqrt{c} \pm b \sqrt{c}=(a \pm b) \sqrt{c} \\ \sqrt{a} \times \sqrt{a}=a \end{gathered}$	$\begin{gathered} \sqrt{48}=\sqrt{16} \times \sqrt{3}=4 \sqrt{3} \\ \sqrt{\frac{25}{36}}=\frac{\sqrt{25}}{\sqrt{36}}=\frac{5}{6} \\ 2 \sqrt{5}+7 \sqrt{5}=9 \sqrt{5} \\ \sqrt{7} \times \sqrt{7}=7 \end{gathered}$
13. Rationalise a Denominator	The process of rewriting a fraction so that the denominator contains only rational numbers.	$\begin{gathered} \frac{\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{3} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}}=\frac{\sqrt{6}}{2} \\ \frac{6}{3+\sqrt{7}}=\frac{6(3-\sqrt{7})}{(3+\sqrt{7})(3-\sqrt{7})} \\ =\frac{18-6 \sqrt{7}}{9-7} \\ =\frac{18-6 \sqrt{7}}{2}=9-3 \sqrt{7} \end{gathered}$

