Topic/Skill Definition/Tips Example 1. Coordinates Written in pairs. The first term is the x-A: (4,7) coordinate (movement across). The B: (-6,-3) second term is the y-coordinate (movement **up or down**) -10 -8 -6 -4 ●B 2. Midpoint of Method 1: add the x coordinates and Find the midpoint between (2,1) and a Line divide by 2, add the y coordinates and (6,9)divide by 2 $\frac{2+6}{2} = 4$ and $\frac{1+9}{2} = 5$ Method 2: Sketch the line and find the values half way between the two x and two So, the midpoint is (4,5)y values. Straight line graph. Example: 3. Linear Graph Other The general equation of a linear graph is examples: v = mx + cx = yy = 4where *m* is the gradient and *c* is the yx = -2intercept. y = 2x - 7y + x = 10The **equation** of a linear graph can contain 2y - 4x = 12an x-term, a y-term and a number. Method 1: Table of Values 4. Plotting -1 0 1 2 3 -3 -2 Linear Graphs Construct a table of values to calculate coordinates. x + 30 1 2 3 4 5 6 Method 2: Gradient-Intercept Method (use when the equation is in the form y =mx + c) 1. Plots the y-intercept 2. Using the gradient, plot a second point. 3. Draw a line through the two points plotted. Method 3: Cover-Up Method (use when the equation is in the form ax + by = c) 1. Cover the x term and solve the resulting equation. Plot this on the x - axis. 2. Cover the *y* term and solve the resulting equation. Plot this on the y - axis. 2x + 4y = 83. Draw a line through the two points plotted.

Topic: Coordinates and Linear Graphs

		• · · · · · · · · · · · · · · · · · · ·
5. Gradient	The gradient of a line is how steep it is.	Gradient = $4/2 = 2$
	Gradient = $\frac{Change \text{ in } y}{Change \text{ in } x} = \frac{Rise}{Run}$	Gradient = -3/1 =-3
	The gradient can be positive (sloping upwards) or negative (sloping downwards)	
6. Finding the	Substitute in the gradient (m) and point	Find the equation of the line with
Equation of a Line given a	(\mathbf{x},\mathbf{y}) in to the equation $y = mx + c$ and solve for c.	gradient 4 passing through (2,7).
<u>point and a</u> gradient		y = mx + c $7 = 4 \times 2 + c$ c = -1
7. Finding the Equation of a Line given two	Use the two points to calculate the gradient . Then repeat the method above using the gradient and either of the points.	y = 4x - 1 Find the equation of the line passing through (6,11) and (2,3)
points	using the gradient and entiter of the points.	$m = \frac{11 - 3}{6 - 2} = 2$
		$y = mx + c$ $11 = 2 \times 6 + c$
		c = -1
8. Parallel Lines	If two lines are parallel , they will have the same gradient . The value of m will be the same for both lines.	y = 2x - 1 Are the lines $y = 3x - 1$ and $2y - 6x + 10 = 0$ parallel?
	sume for both mes.	Answer: Rearrange the second equation in to the form $y = mx + c$
		$2y - 6x + 10 = 0 \rightarrow y = 3x - 5$
		Since the two gradients are equal (3), the lines are parallel.
9. Perpendicular Lines	If two lines are perpendicular , the product of their gradients will always equal -1 . The gradient of one line will be the negative reciprocal of the gradient of the other line.	Find the equation of the line perpendicular to $y = 3x + 2$ which passes through (6,5)
		Answer: As they are perpendicular, the gradient
	You may need to rearrange equations of lines to compare gradients (they need to be	of the new line will be $-\frac{1}{3}$ as this is the negative reciprocal of 3.
	in the form $y = mx + c$)	y = mx + c

	$5 = -\frac{1}{2} \times 6 + c$
	$5 = -\frac{1}{3} \times 6 + c$ $c = 7$
	1
	$y = -\frac{1}{3}x + 7$
	Or $3x + x - 7 = 0$