Physics 5: Forces					Section 3: Elasticity					
Section 1: Key terms						18 Elastic deformation		Occurs when a spring is stretched and can then return to its original length.		
1 Scalar A value with magnitude (size) only, e.g. speed, dis			g. speed, distance.				Occurs when a spring is stretched and its length is			
		A value with magnitude (size) and direction, e.g. all forces, displacement, velocity.				19 Inelastic defor	mation	permanently altered.		
		Force between objects that are touching e.g. friction, air resistance.						The length a spring can be stretched before it no longer is		
4 Non-contact force		Force between separa	ravitational force, magnetic force.		20 Limit of proportionality		able to return to its original length . Beyond the limit of proportionality, a force-extension graph is curved.			
5 Weight		The force of gravity a	ct's mass. Measured using a newtonmeter.				proportionality, a force extension graph is curved.			
6 Centre of mass		The single point at w	weight appears to act.							
I RACI ITANT TOPCA		A resultant force is a si object.	has the same effect as all the forces acting on an							
		Work is done when an object is moved through a distance . When work is done against friction there is a temperature rise .				Force (Newtons)		Limit of proportionality		
9 Mor	mentum (HT)	Moving objects with ma	ass have momentu	um. Momentum is "mass in motion".		(Nev		21 Force-extension graph		
		In a closed system, the total momentum before an event is equal to the total momentum after the event.				Force		Extension in		
Secti	on 2: Equations	to learn					proportional to			
	Equation		Symbol equation	Units				force		
11	Weight = mass strength	k gravitational field	W = m g	Weight – newtons (N) Mass – kilograms (kg) GFS – newtons per kilogram (N/kg)		Extension (metres)				
12	Work done = for	ce x distance	W = F s	Work done – joules (J)	-					
				Force – newtons (N) Distance – metres (m)		Section 4: Force	es and Br	d Braking		
						21 Stopping		he stopping distance of a vehicle is the sum of the distance the vehicle		
13	Force = spring c	onstant x extension	F = k e	Force – newtons (N)		distance		during the driver's reaction time (thinking distance) and the it travels under the braking force (braking distance).		
				Spring constant – newtons per metre (N/m) Extension – metres (m)			uistarice			
14 Distance = spee		d x time	s = v t	Distance – metres (m) Speed – metres per second (m/s) Time – seconds (s)	-	22 Thinking distance	ance	ance a vehicle travels while a driver is reacting.		
								e it takes for a driver to react, typically 0.2-0.9s. Affected by		
								s, drugs, alcohol and distractions.		
15 Acceleration =			a = <u>∆v</u> +	Acceleration = metres per second squared (m/s ²) Velocity = metres per second (m/s) Time = seconds (s)				ance a vehicle travels under braking. Affected by weather		
	time taken					24 Braking	conditio	ns (e.g. rain or ice) and the conditions of the brakes and tyres		
26	Resultant force :	= mass x acceleration		Force – newtons (N)			of a vehicle.			
				Mass – kilograms (kg) Acceleration = metres per second squared (m/s ²) Momentum – kilograms metres per second (kg m/s) Mass – kilograms (kg) Velocity = metres per second (m/s)			When the brakes are pressed, work done by the friction force between the brakes and the wheel reduces the kinetic energy of the vehicle and the temperature of the brakes increases. The greater the speed of a vehicle, the greater the force needed to stop the vehicle. Large declarations may lead to loss of control or overheating of the brakes.			
17 (HT)	Momentum = m	s x velocity	ρ = m v			25 Braking force				

Section 5a: Motio	n						
25 Displacement	The distance an object moves and the direction in which it occurs. A vector quantity.						
26 Velocity	The speed of an object in a particular direction .						
27 Acceleration	The change of an object's speed in a certain amount of time. If an object is falli near the surface of the Earth its acceleration will be 9.8m/s² .						
28 Terminal velocity	The maximum speed of a moving object. Occurs when the force moving an object (e.g. gravity) is balanced by frictional forces (e.g. air resistance).						
29 Circular motion (HT) An object moving in a cir is because the direction in		e has constant speed but changing velocity . This hich the object is moving is constantly changing, and hat measures direction and speed.					
30 Distance-time	graph	31 Velocity-time graph					
Constant speed - sti	raight line	Constant speed - horizontal line					
Accelerating - curve	d line upwards	Accelerating - straight line with velocity increasing					
Decelerating - curve horizontal	ed line going towards	Decelerating - straight line with velocity decreasing					
Stationary - horizon	tal line	Stationary - horizontal line on x-axis (velocity = 0)					
		Moving backwards - below x-axis					
Gradient of line can	be calculated to give speed	Gradient of line can be calculated to give acceleration or deceleration					

32 Distance-time graph

Decelerating backwards time

50

40

(min)

Section 5b: Typical Values of Speed				
32 Walking	1.5 m/s			
33 Running	3 m/s			
34 Cycling	6 m/s			
35 Sound in air	330 m/s			

Section 6: Newton's Laws

	 The velocity of an object will only change if a resultant force is acting on the object. If there is no resultant force the object will: Remain stationary if it was not moving. Continue at a constant speed if it was already moving.
37 Newton's Second Law	The acceleration of an object is proportional to the resultant force acting on the object, and inversely proportional to the mass of the object, i.e. Force = mass x acceleration.
38 Newton's Third Law	Whenever two objects interact , the forces they exert on each other are equal and opposite .
39 Inertia (HT)	The tendency of objects to continue in their state of rest or of uniform motion .

