Physics 5: Forces

Section 1: Key terms

Scal		A value with magnitude (size) only, e.g. speed, distance.		
2 Vec		A value with magnitude (size) and direction, e.g. all forces, displacement, velocity.		
3 Con	tact force	Force between objects that are touching e.g. friction, air resistance.		
4 Non	-contact force	Force between separate objects e.g. gravitational force, magnetic force.		
5 Wei		The force of gravity acting on an object's mass. Measured using a newtonmeter.		
6 Cen	tre of mass	The single point at which the object's weight appears to act.		
7 Res	ultant force	A resultant force is a single force that has the same effect as all the forces acting on an object.		
8 Wor	done	Work is done when an object is moved through a distance. When work is done against friction there is a temperature rise.		
9 Mor	nentum (HT)	Moving objects with mass have momentum. Momentum is "mass in motion".		
	onservation of entum (HT)	In a closed system, the total momentum before an event is equal to the total momentum after the event.		
Section 2: Equations to learn Equation			Symbol equation	Units
11	Weight = ma strength	x gravitational field	$\mathrm{W}=\mathrm{mg}$	Weight - newtons (N) Mass - kilograms (kg) GFS - newtons per kilogram (N / kg)
12	Work done =	orce x distance	$\mathrm{W}=\mathrm{Fs}$	Work done - joules (J) Force - newtons (N) Distance - metres (m)
13	Force = sprin	constant x extension	$F=k e$	```Force - newtons (N) Spring constant - newtons per metre (\(\mathrm{N} / \mathrm{m}\)) Extension - metres (m)```
14	Distance = sp	ed x time	$s=v t$	Distance - metres (m) Speed - metres per second (m / s) Time - seconds (s)
15	Acceleration	change in velocity time taken	$a=\frac{\Delta v}{t}$	Acceleration $=$ metres per second squared $\left(\mathrm{m} / \mathrm{s}^{2}\right)$ Velocity $=$ metres per second (m / s) Time = seconds (s)
26	Resultant forc	$=$ mass x acceleration	$F=m a$	$\begin{array}{\|l} \text { Force }- \text { newtons }(\mathrm{N}) \\ \text { Mass - kilograms }(\mathrm{kg}) \\ \text { Acceleration }=\text { metres per second squared }\left(\mathrm{m} / \mathrm{s}^{2}\right) \\ \hline \end{array}$
$\stackrel{17}{(H T)}$	Momentum =	mass x velocity	$\rho=m \mathrm{v}$	Momentum - kilograms metres per second ($\mathrm{kg} \mathrm{m} / \mathrm{s}$) Mass - kilograms (kg) Velocity $=$ metres per second $(\mathrm{m} / \mathrm{s})$

Section 3: Elasticity
18 Elastic deformation

Occurs when a spring is stretched and can then return to its original length.
19 Inelastic deformation

20 Limit of proportionality
Occurs when a spring is stretched and its length is permanently altered.
The length a spring can be stretched before it no longer is able to return to its original length. Beyond the limit of proportionality, a force-extension graph is curved.

Section 4: Forces and Braking

21 Stopping \quad The stopping distance of a vehicle is the sum of the distance the vehicle travels during the driver's reaction time (thinking distance) and the distance it travels under the braking force (braking distance).
22 Thinking
distance

23 Reaction time

24 Braking
distance

25 Braking force he brakes and the wheel reduces the kinetic energy of the vehicle and the temperature of the brakes increases. The greater the speed of a vehicle, the greater the force needed to stop the vehicle. Large declarations may lead to loss of control or overheating of the brakes.

Section 5a: Motion	
25 Displacement	The distance an object moves and the direction in which it occurs. A vector quantity.
26 Velocity	The speed of an object in a particular direction.
27 Acceleration	The change of an object's speed in a certain amount of time. If an object is falling near the surface of the Earth its acceleration will be 9.8m/s
28 Terminal velocity	The maximum speed of a moving object. Occurs when the force moving an object (e.g. gravity) is balanced by frictional forces (e.g. air resistance).
29 Circular motion (HT)	An object moving in a circle has constant speed but changing velocity. This is because the direction in which the object is moving is constantly changing, and velocity is a vector quantity that measures direction and speed.
30 Distance-time graph	31 Velocity-time graph
Constant speed - straight line	Constant speed - horizontal line
Accelerating - curved line upwards	Accelerating - straight line with velocity increasing
Decelerating - curved line going towards horizontal	Secelerating - straight line with velocity decreasing
Stationary - horizontal line	Moving backwards - below x-axis
	Gradient of line can be calculated to give acceleration or deceleration
Gradient of line can be calculated to give speed	

Section 6: Newton's Laws

```
36 Newton's First
```

Law

The velocity of an object will only change if a resultant force is acting on object.
If there is no resultant force the object will:
Remain stationary if it was not moving.
Continue at a constant speed if it was already moving.

37 Newton's

 Second LawThe acceleration of an object is proportional to the resultant force acting on the object, and inversely proportional to the mass of the object, i.e. Force $=$ mass x acceleration.

38 Newton's Third

Whenever two objects interact, the forces they exert on each other are Law equal and opposite

39 Inertia (HT)

The tendency of objects to continue in their state of rest or of uniform motion.

