Maths Knowledge Organiser

Languago

Probability	The likelihood/chance of something happening.	
	Is expressed as a number between 0	Impossible Unlikely Even Chance Likely Certain
	(impossible) and 1 (certain)	
	Can be expressed as a fraction decimal	
	nercentage or in words (likely unlikely even	1-in-6 Chance 4-in-5 Chance
	chance etc.)	
Probability Notation	P(A) refers to the probability that event A will	P(Red Queen) refers to the probability of
		nicking a Red Queen from a pack of cards
Theoretical Probability	Number of Favourable Outcomes	Probability of rolling a 4 on a fair 6-sided die
	Total Number of Descible Outcomes	
	Total Number of Possible Outcomes	=6
Relative Frequency	Number of Successful Trials	A coin is flipped 50 times and lands on Tails
	Total Number of Trials	29 times.
		The relative frequency of getting Tails = $\frac{29}{50}$.
Expected Outcomes	To find the number of expected outcomes,	The probability that a football team wins is
	multiply the probability by the number of	0.2 How many games would you expect them
	trials.	to win out of 40?
		$0.2 \times 40 = 8 games$
Mutually Exclusive	Events are mutually exclusive if they cannot	Examples of mutually exclusive events:
	happen at the same time.	
		- Turning left and right
	The probabilities of an exhaustive set of	- Heads and Tails on a coin
	mutually exclusive events adds up to 1.	
		Examples of non mutually exclusive events:
		- King and Hearts from a deck of cards,
		because you can pick the King of Hearts
Biased	Biased means that something is unfair.	On a biased dice, one number is more likely
		to come up than all of the rest.
	On a fair dice, the probability of getting each of	4
	1	If $P(3) = \frac{1}{7}$ this would mean that it is a biased
	the numbers is $\frac{1}{6}$.	dice as you are more likely to land on a 3
		than any other number.
Fair Dice	A fair dice is a normal 6 sided dice where each	Possible outcomes:
	number has the same chance of being rolled	1. 2. 3. 4. 5. 6
Pack of Cards	52 cards in a deck.	_, _, y, y, y, y
	4 suits: Diamonds (red). Hearts (red). Spades (black) and Clubs (black)	
	13 cards ner suit: 1 (ace) 2 3 4 5 6 7 8 9 10 Jack Oueen King	
	Number Cards: $1 = 10$	
	Dicture/Face Cards: Lacks Queens and Kings	
	Ficture/Face Carus: Jacks, Queens and Kings	

Organisation		
Frequency Tree	A diagram showing how information is categorised into various categories. The numbers at the ends of branches tells us how often something happened (frequency). The lines connected the numbers are called branches .	
Venn Diagrams	A Venn Diagram shows the relationship between a group of different things and he they overlap.	
	You may be asked to shade Venn Diagrams as shown below and to the right.	
	$A \cup B \qquad A \cap B \qquad A \cap B$ $A \cap B \qquad B \qquad A \cap B \qquad A \cap B$ $A \cap B \qquad B A \cap B \qquad B A \cap B \qquad B A \cap B A \cap B B B A \cap B B B A \cap B B B B B B B A \cap B B B B B B B B B B$	
Probability Notation	P(A) refers to the probability that event A will occur.	
	P(A') refers to the probability that event A will <u>not</u> occur.	
	P(A ∪ B) refers to the probability that event A or B or both will occur.	
	$P(A \cap B)$ refers to the probability that <u>both</u> events A and B will occur.	
Venn Diagram	\in means ' element of a set ' (a value in the set)	
Notation	{ } means the collection of values in the set.	
	ξ means the ' universal set ' (all the values to consider in the question)	
	A' means 'not in set A' (called complement)	
	$A \cup B$ means 'A or B or both' (called Union)	
	$A \cap B$ means 'A and B (called Intersection)	

