Topic/Skill	Definition/Tips	Example
1. Types of Angles	Acute angles are less than 90°. Right angles are exactly 90°. Obtuse angles are greater than 90° but less than 180°. Reflex angles are greater than 180° but less than 360°.	
2. Angle Notation	Can use one lower-case letters, eg. θ or x Can use three upper-case letters, eg. $B A C$	
3. Angles at a Point	Angles around a point add up to $360{ }^{\circ}$.	
4. Angles on a Straight Line	Angles around a point on a straight line add up to 180°.	
5. Opposite Angles	Vertically opposite angles are equal.	$\frac{x / y}{y / x}$
6. Alternate Angles	Alternate angles are equal. They look like Z angles, but never say this in the exam.	
7. Corresponding Angles	Corresponding angles are equal. They look like F angles, but never say this in the exam.	
8. Co-Interior Angles	Co-Interior angles add up to 180°. They look like C angles, but never say this in the exam.	

9. Angles in a Triangle	Angles in a triangle add up to 180 	Right Angle Triangles have a 90 Isosceles Triangles have 2 equal sides and 2 equal base angles. Equilateral Triangles have 3 equal sides and 3 equal angles (60
Scalene Triangles have different sides and		
different angles.		
Base angles in an isosceles triangle are		
equal.		

	$\mathbf{1 8 0}$ - Size of Exterior Angle	
17. Size of Exterior Angle in a Regular Polygon	$\frac{\mathbf{3 6 0}}{\boldsymbol{n}}$	Size of Exterior Angle in a Regular Octagon $=$ You can also use the formula: $\mathbf{1 8 0}$ - Size of Interior Angle

