Topic/Skill	Definition/Tips	Example
1. Function Machine	Takes an input value, performs some operations and produces an output value.	INPUT OUTPUT
2. Function	A relationship between two sets of values.	$f(x)=3 x^{2}-5$ 'For any input value, square the term, then multiply by 3 , then subtract 5 '.
3. Function notation	$f(x)$ \boldsymbol{x} is the input value $\boldsymbol{f}(\boldsymbol{x})$ is the output value.	$f(x)=3 x+11$ Suppose the input value is $x=5$ The output value is $f(5)=3 \times 5+$ $11=26$
4. Inverse function	$f^{-1}(x)$ A function that performs the opposite process of the original function. 1. Write the function as $y=f(x)$ 2. Rearrange to make x the subject. 3. Replace the \boldsymbol{y} with \boldsymbol{x} and the \boldsymbol{x} with $f^{-1}(x)$	$f(x)=(1-2 x)^{5}$. Find the inverse. $\begin{aligned} & y=(1-2 x)^{5} \\ & \sqrt[5]{y}=1-2 x \\ & 1-\sqrt[5]{y}=2 x \\ & \frac{1-\sqrt[5]{y}}{2}=x \end{aligned}$ $f^{-1}(x)=\frac{1-\sqrt[5]{x}}{2}$
5. Composite function	A combination of two or more functions to create a new function. $\boldsymbol{f} \boldsymbol{g}(\boldsymbol{x})$ is the composite function that substitutes the function $\boldsymbol{g}(\boldsymbol{x})$ into the function $\boldsymbol{f}(\boldsymbol{x})$. $\boldsymbol{f} \boldsymbol{g}(\boldsymbol{x})$ means 'do g first, then f ' $\boldsymbol{g} \boldsymbol{f}(\boldsymbol{x})$ means 'do f first, then g '	$f(x)=5 x-3, g(x)=\frac{1}{2} x+1$ What is $f g(4)$? $\begin{gathered} g(4)=\frac{1}{2} \times 4+1=3 \\ f(3)=5 \times 3-3=12=f g(4) \end{gathered}$ What is $f g(x)$? $f g(x)=5\left(\frac{1}{2} x+1\right)-3=\frac{5}{2} x+2$

