Maths Knowledge Organiser

Powers

When multiplying with the same base	$7^5 \times 7^3 = 7^8$
(number or letter), add the powers.	$a^{12} \times a = a^{13}$
	$4x^5 \times 2x^8 = 8x^{13}$
$a^m \times a^n = a^{m+n}$	
When dividing with the same base (number or	$15^7 \div 15^4 = 15^3$
letter), subtract the powers.	$x^9 \div x^2 = x^7$
	$20a^{11} \div 5a^3 = 4a^8$
$a^m \div a^n = a^{m-n}$	
When raising a power to another power,	$(y^2)^5 = y^{10}$
multiply the powers together.	$(6^3)^4 = 6^{12}$ $(5x^6)^3 = 125x^{18}$
	$(5x^6)^3 = 125x^{18}$
$(a^m)^n = a^{mn}$	
$p = p^1$	$99999^0 = 1$
$p^0 = 1$	
A negative power performs the reciprocal.	$3^{-2} = \frac{1}{3^2} = \frac{1}{9}$
g-m _ 1	$3 - \frac{1}{3^2} - \frac{1}{9}$
$u = \frac{1}{a^m}$	
The denominator of a fractional power acts as	$27^{\frac{2}{3}} = \left(\sqrt[3]{27}\right)^2 = 3^2 = 9$
a 'root'.	2, (12,) 3
The numerator of a fractional power acts as a	3 3 2
normal power.	$\left(\frac{25}{16}\right)^{\frac{3}{2}} = \left(\frac{\sqrt{25}}{\sqrt{16}}\right)^3 = \left(\frac{5}{4}\right)^3 = \frac{125}{64}$
	$(\overline{16}) - (\overline{\sqrt{16}}) - (\overline{4}) - \overline{64}$
$a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m$, ,
	(number or letter), add the powers. $a^m \times a^n = a^{m+n}$ When dividing with the same base (number or letter), subtract the powers. $a^m \div a^n = a^{m-n}$ When raising a power to another power, multiply the powers together. $(a^m)^n = a^{mn}$ $p = p^1$ $p^0 = 1$ A negative power performs the reciprocal. $a^{-m} = \frac{1}{a^m}$ The denominator of a fractional power acts as a 'root'. The numerator of a fractional power acts as a normal power.

Factorising

Factorising	When a quadratic expression is in the form	$x^2 + 7x + 10 = (x+5)(x+2)$
Quadratics	$x^2 + bx + c$ find the two numbers that add to	(because 5 and 2 add to give 7 and multiply
	give b and multiply to give c.	to give 10)
		$x^2 + 2x - 8 = (x+4)(x-2)$
		(because +4 and -2 add to give +2 and
		multiply to give -8)
Difference of Two	An expression of the form $oldsymbol{a}^2 - oldsymbol{b}^2$ can be	$x^2 - 25 = (x+5)(x-5)$
Squares	factorised to give $(a + b)(a - b)$	$16x^2 - 81 = (4x + 9)(4x - 9)$

9A1a.ii: Using Properties of Number

Fractions

Circulia in	6 2.24.34	20 4
Simplifying	Divide the numerator and denominator by	_
Fractions	the highest common factor.	$\frac{\overline{45}}{9} = \frac{\overline{9}}{9}$
Equivalent	Fractions which represent the same value.	$\frac{2}{2} - \frac{4}{4} - \frac{20}{4} - \frac{60}{4}$ atc
Fractions		$\frac{2}{5} = \frac{1}{10} = \frac{20}{50} = \frac{60}{150} etc.$
Comparing	To compare fractions, they each need to be	Put in to ascending order: $\frac{3}{4}$, $\frac{2}{3}$, $\frac{5}{6}$, $\frac{1}{2}$.
Fractions	rewritten so that they have a common	4 3 6 2
	denominator.	Equivalent: $\frac{9}{12}$, $\frac{8}{12}$, $\frac{10}{12}$, $\frac{6}{12}$
	Ascending means smallest to biggest.	Correct order: $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{5}{6}$
	Descending means biggest to smallest.	2 3 4 0
Adding or	Find the LCM of the denominators to find a	$\frac{2}{3} + \frac{4}{5}$
Subtracting	common denominator.	5 5
Fractions	Use equivalent fractions to change each	Multiples of 3: 3, 6, 9, 12, 15
	fraction to the common denominator.	Multiples of 5: 5, 10, 15
	Then just add or subtract the numerators and	LCM of 3 and 5 = 15
	keep the denominator the same .	$\frac{2}{3} = \frac{10}{15}$ and $\frac{4}{5} = \frac{12}{15}$
		$\frac{10}{15} + \frac{12}{15} = \frac{22}{15} = 1\frac{7}{15}$

Estimating

Error Interval	A range of values that a number could have taken before being rounded or truncated.	0.6 has been rounded to 1 decimal place.
		The error interval is:
	An error interval is written using inequalities,	0.55 4 4 4 0.65
	with a lower bound and an upper bound.	$0.55 \le x < 0.65$
	Note that the lower bound inequality can be	The lower bound is 0.55
	'equal to', but the upper bound cannot be	The upper bound is 0.65
	'equal to'.	
Estimate	To find something close to the correct	An estimate for the height of a man is 1.8
	answer.	metres.
Approximation	When using approximations to estimate the	$\frac{348 + 692}{3} \approx \frac{300 + 700}{3} = 2000$
	solution to a calculation, round each number	${0.526} \approx {0.5} = 2000$
	in the calculation to 1 significant figure.	
		'Note that dividing by 0.5 is the same as
	≈ means 'approximately equal to'	multiplying by 2'

