Chemistry 3: Quantitative Chemistry

No atoms are lost or gained during a chemical reaction. The mass of the products is the same as the mass of the reactants. Some reactions appear to give a change in mass, but this is because a gas may have escaped from the reaction container.

3 Relative formula mass $\left(M_{f}\right)$ The interval within which the true value can be expected to lie. E.g. $25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ - the true value lies between $23^{\circ} \mathrm{C}$ and $27^{\circ} \mathrm{C}$.
A measurement for the amount of a chemical. It is the mass (in grams) of 6.02×10^{23} (the Avogadro constant) atoms of an element. Symbol: mol. Balanced symbol equations show the number of moles that react. e.g. $\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$

Shows one mole of magnesium reacting with two moles of hydrochloric acid to form one mole of magnesium chloride and one mole of hydrogen
The reactant that is completely used up in a chemical reaction. It limits the amount of product formed
The reactant that is not completely used up in a chemical reaction. There is some reactant left at the end.
A measure of the number of particles of a chemical in a volume. Can be measured in $\mathbf{g} / \mathbf{d m}^{\mathbf{3}}$.
A measurement of volume. Contains $1000 \mathrm{~cm}^{\mathbf{3}}$.

Section 2: Calculations and Examples

11 Calculating relative formula mass (M_{r})	Add up all the atomic masses in a formula. $\text { e.g. }{\underset{y}{4}}_{\mathrm{H}_{2} \mathrm{O}}^{(2 \times 1)} \text {. Mass of hydrogen }=1 \text {. } \text {. Mass of oxygen }=16 \text {. }$
12 Percentage uncertainty	$\text { Percentage uncertainty }=\frac{\text { Uncertainty }}{\text { Quantity being measured }} \times 100$ e.g. What is the percentage uncertainty of a $50 \mathrm{~cm}^{3}$ measuring cylinder accurate to $\pm 2 \mathrm{~cm}^{3}$? $\text { Percentage uncertainty }=\frac{2}{50} \times 100=4 \%$
13 Number of moles	$\text { Number of moles }=\frac{\text { Mass of chemical }}{\text { Relative formula mass }}$ e.g. How many moles of water are there in 36 g of $\mathrm{H}_{2} \mathrm{O}$? Number of moles $=\frac{36}{18}=2$ moles
14 Volume in dm^{3}	Volume in $\mathrm{dm}^{3}=\frac{\text { volume of liquid }}{1000 \mathrm{~cm}^{3}}$ e.g. What is the volume in dm^{3} of $500 \mathrm{~cm}^{3}$ of hydrochloric acid? Volume in $\mathrm{dm}^{3}=500=0.5 \mathrm{dm}^{3}$ 1000
15 Concentration of a solution	Concentration $=\quad \frac{\text { Mass of solute }}{\text { Volume (in } \mathrm{dm}^{3} \text {) }}$ e.g. What is the concentration of a solution of hydrochloric acid which contains 100 g of hydrochloric acid in $500 \mathrm{~cm}^{3}$? Concentration $=\frac{100}{0.5}=200 \mathrm{~g} / \mathrm{dm}^{3}$

