Chemistry 3: Quantitative Chemistry		Section 2: Calculations an		
Section 1: Bonding Key Terms				Add up all the atomic masses in a formula.
1 Law of conservation of mass	No atoms are lost or gained during a chemical reaction . The mass of the products is the same as the mass of the reactants. Some reactions appear to give a change in mass , but this is because a gas may have escaped from the reaction container.		11 Calculating relative formula mass (<i>M_r</i>)	e.g. H ₂ O. Mass of hydrogen = 1. Mass of oxygen = 16. (2x1) + 16 = 18
				Percentage uncertainty = <u>Uncertainty</u> x100 Quantity being measured
3 Relative formula mass (M_r) The sum of all the atomic masses of the atoms in a formula (e.g. H ₂ O).				
4 Uncertainty	A measurement for the amount of a chemical. It is the mass (in grams) of 6.02 x 10²³ (the Avogadro constant) atoms of an element . Symbol: mol.		12 Percentage uncertainty	e.g. What is the percentage uncertainty of a 50cm ³ measuring cylinder accurate to ± 2 cm ³ ?
5 Mole (HT)				Percentage uncertainty = $\frac{2}{50} \times 100 = 4\%$
6 Balanced equation (HT)	Balanced symbol equations show the numbe e.g. Mg + 2HCl \rightarrow MgCl ₂ + H ₂ Shows one mole of magnesium reacting with t to form one mole of magnesium chloride and d	two moles of hydrochloric acid one mole of hydrogen.		Number of moles = <u>Mass of chemical</u> Relative formula mass
	The reactant that is completely used up in a chemical reaction. It limits the amount of product formed. The reactant that is not completely used up in a chemical reaction. There is some reactant left at the end.		13 Number of moles	e.g. How many moles of water are there in 36g of H_2O ?
8 Excess reactant (HT)				Number of moles = $\frac{36}{18}$ = 2 moles
9 Concentration	A measure of the number of particles of a c measured in g/dm³ .	chemical in a volume . Can be		Volume in $dm^3 = \frac{volume of liquid}{1000 cm^3}$
	A measurement of volume. Contains 1000	0cm ³ .	14 Volume in dm ³	e.g. What is the volume in dm ³ of 500cm ³ of hydrochloric acid?
				Volume in $dm^3 = 500 = 0.5 dm^3$ 1000
				Concentration = $\frac{\text{Mass of solute}}{\text{Volume (in dm}^3)}$
				e.g. What is the concentration of a solution of hydrochloric acid which contains 100g of hydrochloric acid in 500cm ³ ?
				Concentration = $\frac{100}{0.5}$ = 200g/dm ³