| Topic/Skill | Definition/Tips | Example |
| :---: | :---: | :---: |
| 1. Iteration | The act of repeating a process over and over again, often with the aim of approximating a desired result more closely. <br> Recursive Notation: $x_{n+1}=\sqrt{3 x_{n}+6}$ | $\begin{array}{r} x_{1}=4 \\ x_{2}=\sqrt{3 \times 4+6}=4.242640 \ldots \\ x_{3}=\sqrt{3 \times 4.242640 \ldots+6} \\ =4.357576 \ldots \end{array}$ |
| 2. Iterative Method | To create an iterative formula, rearrange an equation with more than one $x$ term to make one of the $x$ terms the subject. <br> You will be given the first value to substitute in, often called $\boldsymbol{x}_{\boldsymbol{1}}$. <br> Keep substituting in your previous answer until your answers are the same to a certain degree of accuracy. This is called converging to a limit. <br> Use the 'ANS' button on your calculator to keep substituting in the previous answer. | Use an iterative formula to find the positive root of $x^{2}-3 x-6=0$ to 3 decimal places. $x_{1}=4$ <br> Answer: $\begin{aligned} & x^{2}=3 x+6 \\ & x=\sqrt{3 x+6} \end{aligned}$ <br> So $x_{n+1}=\sqrt{3 x_{n}+6}$ $\begin{array}{r} x_{1}=4 \\ x_{2}=\sqrt{3 \times 4+6}=4.242640 \ldots \\ x_{3}=\sqrt{3 \times 4.242640 \ldots+6} \\ \quad=4.357576 \ldots \end{array}$ <br> Keep repeating... $\begin{array}{r} x_{7}=4.372068 . .=4.372(3 d p) \\ x_{8}=4.372208 \ldots=4.372(3 d p) \end{array}$ <br> So answer is $x=4.372(3 d p)$ |

