Topic: Simultaneous Equations

Topic/Skill	Definition/Tips	Example
1.	A set of two or more equations , each	2x + y = 7
Simultaneous	involving two or more variables (letters).	3x - y = 8
Equations		
	The solutions to simultaneous equations	x = 3
	satisfy both/all of the equations.	<i>y</i> = 1
2. Variable	A symbol , usually a letter , which	In the equation $x + 2 = 5$, x is the
	represents a number which is usually	variable.
	unknown.	
3. Coefficient	A number used to multiply a variable.	6z
	It is the number that comes before/in front	6 is the coefficient
	of a letter.	z is the variable
4. Solving	1. Balance the coefficients of one of the	5x + 2y = 9
Simultaneous	variables.	10x + 3y = 16
Equations (by Elimination)	2. Eliminate this variable by adding or subtracting the equations (Same Sign	Multiply the first equation by 2.
,	Subtract, Different Sign Add)	10x + 4y = 18
	3. Solve the linear equation you get using	10x + 3y = 16
	the other variable.	Same Sign Subtract (+10x on both)
	4. Substitute the value you found back into	y = 2
	one of the previous equations.	-
	5. Solve the equation you get.	Substitute $y = 2$ in to equation.
	6. Check that the two values you get satisfy	
	both of the original equations.	$5x + 2 \times 2 = 9$
		5x + 4 = 9
		5x = 5
		x = 1
		Solution: $x = 1, y = 2$
5. Solving	1. Rearrange one of the equations into the	y - 2x = 3
Simultaneous	form $y = \dots$ or $x = \dots$	3x + 4y = 1
Equations (by	2. Substitute the right-hand side of the	
Substitution)	rearranged equation into the other equation. 3. Expand and solve this equation.	Rearrange: $y - 2x = 3 \rightarrow y = 2x + 3$
	4. Substitute the value into the $y =$ or	Substitute: $3x + 4(2x + 3) = 1$
	$x = \dots$ equation.	
	5. Check that the two values you get	Solve: $3x + 8x + 12 = 1$
	satisfy both of the original equations.	11x = -11
		x = -1
		Substitute: $y = 2 \times -1 + 3$ y = 1
		Solution: $x = -1, y = 1$
		Solution: $x = 1, y = 1$

6. Solving	Draw the graphs of the two equations.	y = 2x - 1
Simultaneous		
Equations	The solutions will be where the lines	
(Graphically)	meet.	y = 5 - x
	The solution can be written as a	
	coordinate.	
		y = 5 - x and $y = 2x - 1$.
		They meet at the point with coordinates
		(2,3) so the answer is $x = 2$ and $y = 3$
7. Solving	Method 1: If both equations are in the same	Example 1
Linear and	form (eg. Both $y =$):	Solve
Quadratic	1. Set the equations equal to each other.	$y = x^2 - 2x - 5$ and $y = x - 1$
Simultaneous	2. Rearrange to make the equation equal	
Equations	to zero.	$x^2 - 2x - 5 = x - 1$
	3. Solve the quadratic equation.	$x^2 - 3x - 4 = 0$
	4. Substitute the values back in to one of	(x-4)(x+1) = 0
	the equations.	x = 4 and $x = -1$
	Method 2: If the equations are not in the	y = 4 - 1 = 3 and
	same form:	y = -1 - 1 = -2
	1. Rearrange the linear equation into the	
	form $y = \dots$ or $x = \dots$	Answers: (4,3) and (-1,-2)
	2. Substitute in to the quadratic equation.	
	3. Rearrange to make the equation equal	Example 2
	to zero.	Solve $x^2 + y^2 = 5$ and $x + y = 3$
	4. Solve the quadratic equation.	
	5. Substitute the values back in to one of	x = 3 - y
	the equations.	$(3-y)^2 + y^2 = 5$
		$9 - 6y + y^2 + y^2 = 5$
	You should get two pairs of solutions (two	$2y^2 - 6y + 4 = 0$
	values for <i>x</i> , two values for <i>y</i> .)	$y^2 - 3y + 2 = 0$
		(y-1)(y-2) = 0
	Graphically, you should have two points of	y = 1 and $y = 2$
	intersection.	
		x = 3 - 1 = 2 and $x = 3 - 2 = 1$
		Answers: (2,1) and (1,2)
		······ (-,1) und (1,2)