| Types of Data | Qualitative Data - non-numerical data Quantitative Data - numerical data <br> Continuous Data - data that can take any numerical value within a given range. <br> Discrete Data - data that can take only specific values within a given range. | Qualitative Data - eye colour, gender etc. <br> Continuous Data - weight, voltage etc. <br> Discrete Data - number of children, shoe size etc. |
| :---: | :---: | :---: |
| Grouped Data | Data that has been bundled in to categories. <br> Seen in grouped frequency tables, histograms, cumulative frequency etc. | Foot length, $l,(\mathrm{~cm})$ Number of children <br> $10 \leqslant l<12$ 5 <br> $12 \leqslant l<17$ 53 |
| Mean | Add up the values and divide by how many values there are. | The mean of $3,4,7,6,0,4,6$ is $\frac{3+4+7+6+0+4+6}{7}=5$ |
| Median Value | The middle value. <br> Put the data in order and find the middle one. If there are two middle values, find the number half way between them by adding them together and dividing by 2. | Find the median of: $4,5,2,3,6,7,6$ Ordered: 2, 3, 4, 5, 6, 6, 7 <br> Median $=5$ |
| Mode /Modal Value | Most frequent/common. <br> Can have more than one mode (called bi-modal or multi-modal) or no mode (if all values appear once) | Find the mode: $4,5,2,3,6,4,7,8,4$ <br> Mode $=4$ |
| Range | Highest value subtract the Smallest value <br> Range is a 'measure of spread'. The smaller the range the more consistent the data. | Find the range: $3,31,26,102,37,97$. $\text { Range }=102-3=99$ |
| Mean from a Table | 1. Find the midpoints (if necessary) <br> 2. Multiply Frequency by values or midpoints <br> 3. Add up these values <br> 4. Divide this total by the Total Frequency <br> If grouped data is used, the answer will be an estimate. | Height in cm Frequency Midpoint $\mathrm{F} \times \mathrm{M}$ <br> $0<h \leq 10$ 8 5 $8 \times 5=40$ <br> $10<h \leq 30$ 10 20 $10 \times 20=200$ <br> $30<h \leq 40$ 6 35 $6 \times 35=210$ <br> Total $\mathbf{2 4}$ Ignore! $\mathbf{4 5 0}$ <br> Estimated Mean <br> height: $450 \div 24=$ <br> 18.75 cm |
| Median from a Table | Use the formula $\frac{(n+1)}{2}$ to find the position of the median. <br> $n$ is the total frequency. | If the total frequency is 15 , the median will be the $\left(\frac{15+1}{2}\right)=8$ th position |
| Lower Quartile | Divides the bottom half of the data into two halves. $\mathrm{LQ}=Q_{1}=\frac{(n+1)}{4} t h \text { value }$ | Find the lower quartile of: 2, 3, 4, 5, 6, 6, 7 $Q_{1}=\frac{(7+1)}{4}=2 n d \text { value } \rightarrow 3$ |
| Lower Quartile | Divides the top half of the data into two halves. $\mathrm{UQ}=Q_{3}=\frac{3(n+1)}{4} t h \text { value }$ | Find the upper quartile of: $2,3,4,5,6, \underline{\mathbf{6}}, 7$ $Q_{3}=\frac{3(7+1)}{4}=6 t h \text { value } \rightarrow 6$ |
| Interquartile Range | The difference between the upper quartile and lower quartile. $I Q R=Q_{3}-Q_{1}$ <br> The smaller the interquartile range, the more consistent the data. | Find the IQR of: 2, 3, 4, 5, 6, 6, 7 $I Q R=Q_{3}-Q_{1}=6-3=3$ |

