Topic/Skill	Definition/Tips	Example
1. Pythagoras' Theorem	For any right angled triangle: $a^{2}+b^{2}=c^{2}$ Used to find missing lengths. a and b are the shorter sides, c is the hypotenuse (longest side).	8$a=y, b=8, c=10$ $a^{2}=c^{2}-b^{2}$ $y^{2}=100-64$ $y^{2}=36$ $y=6$
$2.3 \mathrm{D}$ Pythagoras' Theorem	Find missing lengths by identifying right angled triangles. You will often have to find a missing length you are not asked for before finding the missing length you are asked for.	Can a pencil that is 20 cm long fit in a pencil tin with dimensions $12 \mathrm{~cm}, 13 \mathrm{~cm}$ and 9 cm ? The pencil tin is in the shape of a cuboid. Hypotenuse of the base $=$ $\sqrt{12^{2}+13^{2}}=17.7$ Diagonal of cuboid $=\sqrt{17.7^{2}+9^{2}}=$ 19.8 cm No, the pencil cannot fit.

