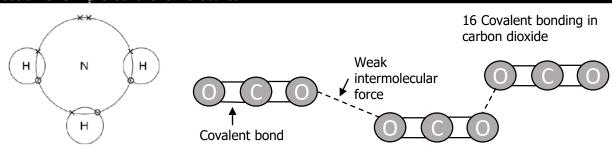

Chemistry 2: Bonding, Structure and the Properties of Matter

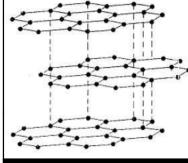
	g, ou detaile and the perches of thate.
Section 1: Bonding Ke	y Terms
	An atom that is charged because of gain or loss of electrons .
	The bond between two oppositely charged ions (metal and non-metal). Occurs because of electrostatic attraction.
	The force that holds two oppositely charged ions together. A strong force.
	In ionic bonding, metals lose electrons to become positively-charged ions.
	In ionic bonding, non-metals gain electrons to become negatively-charged
	ions.
	A large 3D structure that contains a lot of bonds.
	A bond formed when non-metals share electrons . A strong bond.
	A small group of atoms held together with covalent bonds. Not charged.
	Very large covalent compounds with many repeating units.
	The electrons in the outer shell of metal atoms are delocalised and so are
	free to move through the whole structure. The sharing of delocalised
	electrons gives rise to strong metallic bonds.
	A mixture of two or more elements , at least one of which is a metal . E.g.
	steel

Section 2: Ionic Bonding

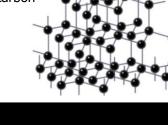


In ionic bonding, metals _____ electrons to become positively-charged ions. Non-metals _____ electrons to become negatively-charged ions.

12 Two representations of a **giant ionic lattice**. The lines represent ionic bonds.


Property	Reason
13 High melting point	There is a s electrostatic force between the positive and negative ions in the giant lattice . A large amount of e is needed to overcome this force .
14 Conduct electricity when liquid/ molten	Ions are able to move so there is a flow of c ions (current).
15 Do not conduct electricity when solid	Ions are in fixed positions so cannot flow.

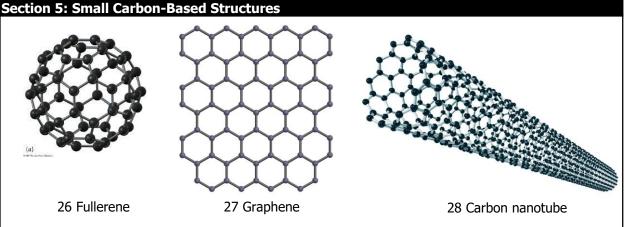
Section 3: Simple Covalent Molecules


Property	Reason
	There are only weak intermolecular forces between the molecules . Not much energy is needed to overcome these forces.
18 Do conduct electricity	Covalent molecules are not charged .

Section 4: Giant Covalent Structures Made of Carbon

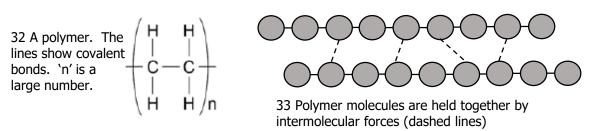
Each carbon forms 3 bonds to other carbon atoms. Arranged in layers with weak intermolecular forces between layers.

Each **carbon** forms **4 bonds** to other carbon atoms.

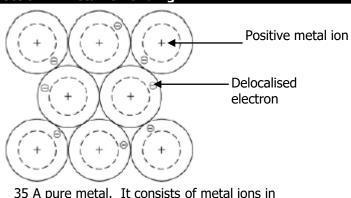


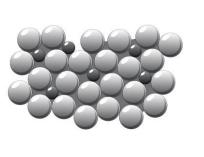
Section 4a: Properties of Graphite

Property	Reason
	Each carbon only forms 3 bonds so one electron is d These
	electrons are free to move and carry charge through the structure.
I// Soft and clinner/	Only weak intermolecular forces exist between layers , so layers can easily be rubbed off.


Section 4b: Properties of Diamond

ш		
'	Property	Reason
	23 Doesn't conduct electricity	Diamond doesn't contain delocalised electrons or ions.
	24 Very hard	Each carbon bonds to 4 other carbon atoms with strong covalent bonds to form a lattice .
		Each carbon bonds to 4 other carbon atoms with strong covalent bonds to form a lattice. A large amount of energy is needed to overcome all these bonds.


Section 1: Pi	roperties of Metals		
	Structure	Properties	Uses
29 Fullerene	Hollow-shaped. Usually hexagonal rings of carbon atoms. E.g. Buckminsterfullerene (C ₆₀)	Very strong . Hollow so can contain other chemicals within it.	Drug delivery, lubricants.
30 Granhene	∧ single layer of	Very strong. Has delocalised electrons so it is able to conduct electricity.	Electronics, composites.
	very long compared to	ITIOVINIO HAC MOINCAILEON	Nanotechnology, electronics, reinforcing (e.g. tennis rackets).


Section 6: Polymers

Property	Reason
	Usually solid because the intermolecular forces between polymer molecules are relatively strong.

Section 7: Metallic Bonding

35 A pure metal. It consists of metal ions in layers with delocalised electrons.

36 An alloy. The layers have been distorted by the presence of other elements

7a Properties of Pure Metals

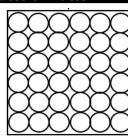
Strong electrostatic forces between the positive ions and delocalised
electrons. Requires a large amount of energy to overcome.
Metals have delocalised electrons . These electrons are able to move
through the structure and carry charge.

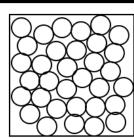
The **delocalised electrons** are able to **move and transfer thermal energy** through the structure.

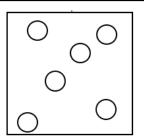
The **layers** are able to **slide over each other** so the metal can be bent and

The **layers** are able to **slide over each other** so the metal can be bent and shaped. The attraction between the positive ions and delocalised electrons prevents the metal from shattering.

7b Properties of Alloys


Property


Reason


41 Harder than metals

The **layers are distorted** by the presence of other elements. This **prevents** the **layers from being able to s_____ over each other**.

Section 8: States of Matter

