Topic: Further Quadratics

Topic/Skill	Definition/Tips	Example
1. Quadratic	A quadratic expression is of the form	Examples of quadratic expressions:
_		x^2
	$ax^2 + bx + c$	$8x^2 - 3x + 7$
	where a, b and c are numbers, $a \neq 0$	Examples of non-quadratic expressions:
		$2x^3 - 5x^2$
		9x-1
2. Factorising	When a quadratic expression is in the form $u^2 + hu + a$ find the true number that add	$x^{2} + 7x + 10 = (x + 5)(x + 2)$
Quadratics	$x^{2} + bx + c$ find the two numbers that add	(because 5 and 2 add to give 7 and
	to give b and multiply to give c.	multiply to give 10)
		$x^{2} + 2x - 8 = (x + 4)(x - 2)$
		(because +4 and -2 add to give +2 and
		multiply to give -8)
3. Difference	An expression of the form $a^2 - b^2$ can be	$\frac{x^2 - 25}{x^2 - 25} = (x + 5)(x - 5)$
of Two	factorised to give $(a + b)(a - b)$	$16x^2 - 81 = (4x + 9)(4x - 9)$
Squares		
4. Solving	Isolate the x^2 term and square root both	$2x^2 = 98$
Quadratics	sides.	$x^2 = 49$
$(ax^2 = b)$	Remember there will be a positive and a	$x = \pm 7$
	negative solution.	
5. Solving	Factorise and then solve = 0 .	$x^2 - 3x = 0$
Quadratics		x(x-3)=0
$(ax^2 + bx =$		x = 0 or x = 3
$\begin{array}{c} 0 \\ \hline \end{array}$		
6. Solving	Factorise the quadratic in the usual way.	Solve $x^2 + 3x - 10 = 0$
Quadratics by Factorising	Solve = 0	Easterises $(x + F)(x - 2) = 0$
(a = 1)	Make sure the equation $= 0$ before	Factorise: $(x + 5)(x - 2) = 0$ x = -5 or x = 2
(u = 1)	factorising.	x = -5 or x = 2
7. Quadratic	A ' U-shaped ' curve called a parabola .	$y \uparrow y = x^{2} - 4x - 5$
Graph	The equation is of the form	
1	$y = ax^2 + bx + c$, where a, b and c are	
	numbers, $a \neq 0$.	-1
	If $a < 0$, the parabola is upside down .	
		(2, -9)
8. Roots of a	A root is a solution .	4
Quadratic		
	The roots of a quadratic are the <i>x</i> -	
	intercepts of the quadratic graph.	
		-2 -1 1 2 3 4
		-2

	1	
9. Turning	A turning point is the point where a	
Point of a	quadratic turns.	
Quadratic		
	On a positive parabola , the turning point is	
	called a minimum .	
	On a negative parabola , the turning point	
	is called a maximum .	
10. Factorising	When a quadratic is in the form	Factorise $6x^2 + 5x - 4$
Quadratics	$ax^2 + bx + c$	
when $a \neq 1$	1. Multiply a by $c = ac$	$1.6 \times -4 = -24$
	2. Find two numbers that add to give b and	2. Two numbers that add to give $+5$ and
	multiply to give ac.	multiply to give -24 are $+8$ and -3
	3. Re-write the quadratic, replacing bx with	$3.6x^2 + 8x - 3x - 4$
	the two numbers you found.	4. Factorise in pairs:
	4. Factorise in pairs – you should get the	2x(3x + 4) - 1(3x + 4)
	same bracket twice	5. Answer = $(3x + 4)(2x - 1)$
	5. Write your two brackets – one will be the	(0,1,1)(2,1)
	repeated bracket, the other will be made of	
	the factors outside each of the two brackets.	
11. Solving	Factorise the quadratic in the usual way.	Solve $2x^2 + 7x - 4 = 0$
Quadratics by	Solve = 0	Solve $2\lambda + 7\lambda + = 0$
Factorising		Easterise: $(2x - 1)(x + 4) = 0$
$(a \neq 1)$	Make sure the equation $= 0$ before	Factorise. $(2x - 1)(x + 4) = 0$
$(u \neq 1)$	factorising.	Factorise: $(2x - 1)(x + 4) = 0$ $x = \frac{1}{2} \text{ or } x = -4$
12.		Complete the square of
	A quadratic in the form $x^2 + bx + c$ can be	
Completing	written in the form $(x + p)^2 + q$	$y = x^2 - 6x + 2$
the Square $(where \ \overline{a} = 1)$		Answer: $(1, 2)^2 + 2^2 + 2$
(when $a = 1$)	1. Write a set of brackets with x in and half	$(x-3)^2 - 3^2 + 2$
	the value of <i>b</i> .	
	2. Square the bracket.	$=(x-3)^2-7$
	3. Subtract $\left(\frac{b}{2}\right)^2$ and add <i>c</i> .	
	4. Simplify the expression.	The minimum value of this expression
	4. Shipiny the expression.	occurs when $(x - 3)^2 = 0$, which
	You can use the completing the square	occurs when $x = 3$
	form to help find the maximum or	When $x = 3$, $y = 0 - 7 = -7$
	minimum of quadratic graph.	
12		Minimum point = (3, -7)
13.	A quadratic in the form $ax^2 + bx + c$ can	Complete the square of $1 + 2 + 2 = 2$
Completing	be written in the form $\mathbf{p}(x+q)^2 + r$	$4x^2 + 8x - 3$
the Square		Answer:
(when $a \neq 1$)	Use the same method as above, but	$4[x^2+2x]-3$
	factorise out <i>a</i> at the start.	$= 4[(x+1)^2 - 1^2] - 3$
		$=4(x+1)^2-4-3$
		$= 4(x+1)^2 - 7$ Solve $x^2 + 8x + 1 = 0$
14. Solving	Complete the square in the usual way and	Solve $x^2 + 8x + 1 = 0$
Quadratics by	use inverse operations to solve.	
Completing		Answer:
the Square		$(x+4)^2 - 4^2 + 1 = 0$
_		$(x+4)^2 - 15 = 0$

		$(x+4)^2 = 15$
		$(x+4) = \pm \sqrt{15}$
		$x = -4 \pm \sqrt{15}$
15. Solving	A quadratic in the form $ax^2 + bx + c = 0$	Solve $3x^2 + x - 5 = 0$
Quadratics	can be solved using the formula:	
using the	$-b \pm \sqrt{b^2 - 4ac}$	Answer:
Quadratic	$x = \frac{1}{2a}$	a = 3, b = 1, c = -5
Formula	Use the formula if the quadratic does not	
	factorise easily.	$-1 \pm \sqrt{1^2 - 4 \times 3 \times -5}$
		$x = \frac{-1 \pm \sqrt{1^2 - 4 \times 3 \times -5}}{2 \times 3}$
		$1 \pm \sqrt{61}$
		$x = \frac{-1 \pm \sqrt{61}}{6}$
		U
		x = 1.14 or - 1.47 (2 d. p.)