Types of Angles	Acute angles are less than 90°. Right angles are exactly 90°. Obtuse angles are greater than 90° but less than 180°. Reflex angles are greater than 180° but less than 360°.	
Angle Notation	Can use one lower-case letters, eg. θ or x Can use three upper-case letters, eg. BAC	
Angles at a Point	Angles around a point add up to 360°.	
Angles on a Straight Line	Angles around a point on a straight line add up to 180°.	
Angles in a Triangle	Angles in a triangle add up to 180°.	
Types of Triangles	Right Angle Triangles have a 90° angle in. Isosceles Triangles have $\mathbf{2}$ equal sides and $\mathbf{2}$ equal base angles. Equilateral Triangles have 3 equal sides and $\mathbf{3}$ equal angles (60°). Scalene Triangles have different sides and different angles. Base angles in an isosceles triangle are equal.	
Opposite Angles	Vertically opposite angles are equal.	

Parallel Lines
Alternate Angles Alternate angles are equal. They look like Z angles, but never say this in the exam. Corresponding angles are equal. They look like F angles, but never say this in the exam. Corresponding Angles
Co-Interior Angles
Co-Interior angles add up to $18 \mathbf{0}^{\circ}$. They look like C angles, but never say this in the exam.

Polygons		
Polygon	A 2D shape with only straight edges.	Rectangle, Hexagon, Decagon, Kite etc.
Regular	A shape is regular if all the sides and all the angles are equal.	
Names of Polygons	$\begin{aligned} & \hline \text { 3-sided }=\text { Triangle } \\ & 4 \text {-sided }=\text { Quadrilateral } \\ & 5 \text {-sided }=\text { Pentagon } \\ & 6 \text {-sided }=\text { Hexagon } \\ & 7 \text {-sided }=\text { Heptagon } \\ & 8 \text {-sided }=\text { Octagon } \\ & 9 \text {-sided }=\text { Nonagon } \\ & 10 \text {-sided }=\text { Decagon } \\ & \hline \end{aligned}$	
Angles in a Quadrilateral	Angles in a quadrilateral add up to 360°.	
Sum of Interior Angles	$(n-2) \times 180$ where n is the number of sides.	Sum of Interior Angles in a Decagon $=$ $(10-2) \times 180=1440^{\circ}$
Size of Interior Angle in a Regular Polygon	$\frac{(n-2) \times 180}{n}$ You can also use the formula: 180 - Size of Exterior Angle	Size of Interior Angle in a Regular Pentagon = $\frac{(5-2) \times 180}{5}=108^{\circ}$
Size of Exterior Angle in a Regular Polygon	$\frac{360}{n}$ You can also use the formula: 180 - Size of Interior Angle	Size of Exterior Angle in a Regular Octagon = $\frac{360}{8}=45^{\circ}$

