Scale	The ratio of the length in a model to the length of the real thing.	
Scale (Map)	The ratio of a distance on the map to the actual distance in real life.	$\begin{aligned} & 1 \mathrm{in.}=250 \mathrm{mi} \\ & 1 \mathrm{~cm}=160 \mathrm{~km} \end{aligned}$
Bearings	1. Measure from North (draw a North line) 2. Measure clockwise 3. Your answer must have 3 digits (eg. 047º) Look out for where the bearing is measured from.	
Compass Directions	You can use an acronym such as 'Never Eat Shredded Wheat' to remember the order of the compass directions in a clockwise direction. Bearings: $N E=045^{\circ}, W=$ 270° etc.	

Constructing Triangles

1. Draw the base of the triangle using a ruler.

Open a pair of compasses to the width of one side of the triangle.
3. Place the point on one end of the line and draw an 4. \quad arc.

Repeat for the other side of the triangle at the other end of the line.
Using a ruler, draw lines connecting the ends of the base of the triangle to the point where the arcs intersect.

1. Draw the base of the triangle using a ruler.
2. Measure the angle required using a protractor and mark this angle.
Remove the protractor and draw a line of the exact length required in line with the angle mark drawn.
Connect the end of this line to the other end of the Connect the end of this line to the other end of the
base of the triangle.
3. Draw the base of the triangle using a ruler.
4. Measure one of the angles required using a protractor and mark this angle.
5. Draw a straight line through this point from the same
point on the base of the triangle.
Repeat this for the other angle on the other end of the base of the triangle.

