Simultaneous Equations

	A set of two on more equations, each involving	$2\alpha + \alpha = 7$
Simultaneous Equations	A set of two or more equations , each involving two or more variables (letters).	2x + y = 7 $3x - y = 8$
	The solutions to simultaneous equations satisfy both /all of the equations .	x = 3 y = 1
Variable	A symbol, usually a letter, which represents a	In the equation $x + 2 = 5$, x is the variable.
Coefficient	number which is usually unknown.	6z
Coefficient	A number used to multiply a variable .	62
	It is the number that comes before/in front of a	6 is the coefficient
	letter.	z is the variable
Solving Simultaneous	1. Balance the coefficients of one of the	5x + 2y = 9
Equations (by	variables.	10x + 3y = 16
Elimination)	2. Eliminate this variable by adding or	Multiply the first equation by 2.
	subtracting the equations (Same Sign Subtract, Different Sign Add)	10x + 4y = 18
	3. Solve the linear equation you get using the	10x + 3y = 16
	other variable.	Same Sign Subtract (+10x on both)
	4. Substitute the value you found back into	y = 2
	one of the previous equations.	
	5. Solve the equation you get.	Substitute $y = 2$ in to equation.
	6. Check that the two values you get satisfy	5
	both of the original equations.	$5x + 2 \times 2 = 9$ 5x + 4 = 9
		5x + 4 = 9 $5x = 5$
		x = 1
		Solution: $x = 1, y = 2$
Solving Simultaneous	1. Rearrange one of the equations into the	y - 2x = 3
Equations (by	form $y = \dots$ or $x = \dots$	3x + 4y = 1
Substitution)	2. Substitute the right-hand side of the rearranged equation into the other	Rearrange: $y - 2x = 3 \rightarrow y = 2x + 3$
	equation.	$\frac{1}{10000000000000000000000000000000000$
	3. Expand and solve this equation.	Substitute: $3x + 4(2x + 3) = 1$
	4. Substitute the value into the $y =$ or $x =$	
	equation.	Solve: $3x + 8x + 12 = 1$
	5. Check that the two values you get satisfy	11x = -11
	both of the original equations.	x = -1
		Substitute: $y = 2 \times -1 + 3$
		y = 1
		Solution: $x = -1, y = 1$
		1, y = 1

HELSTON COMMUNITY COLLEGE