Sequences

bequences		
Linear Sequence	A number pattern with a common difference .	2, 5, 8, 11 is a linear sequence
Term	Each value in a sequence is called a term.	In the sequence 2, 5, 8, 11, 8 is the third term of
		the sequence.
Term-to-term rule	A rule which allows you to find the next term in a sequence if you know the previous term .	First term is 2. Term-to-term rule is 'add 3'
		Sequence is: 2, 5, 8, 11
nth term	A rule which allows you to calculate the term that is in the	nth term is $3n-1$
	nth position of the sequence.	
		The 100 th term is $3 \times 100 - 1 = 299$
	Also known as the 'position-to-term' rule.	
	n refers to the position of a term in a sequence.	
Finding the nth term	1. Find the difference .	Find the nth term of: 3, 7, 11, 15
of a linear sequence	2. Multiply that by <i>n</i> .	
	3. Substitute $n = 1$ to find out what number you need to	1. Difference is +4
	add or subtract to get the first number in the	2. Start with 4 <i>n</i>
	sequence.	3. $4 \times 1 = 4$, so we need to subtract 1 to get 3.
		nth term = $4n - 1$
Fibonacci type	A sequence where the next number is found by adding up	The Fibonacci sequence is:
sequences	the previous two terms	1,1,2,3,5,8,13,21,34
		An example of a Fibonacci-type sequence is: 4, 7, 11, 18, 29
Geometric Sequence	A sequence of numbers where each term is found by	An example of a geometric sequence is:
	multiplying the previous one by a number called the	2, 10, 50, 250
	common ratio, r.	The common ratio is 5
		Another example of a geometric sequence is:
		81, -27, 9, -3, 1
		The common ratio is $-\frac{1}{3}$
Quadratic Sequence	A sequence of numbers where the second difference is	2 6 12 20 30 42
	constant.	+4 +6 +8 +10 +12
	A quadratic sequence will have a n^2 term.	+2 +2 +2 +2
nth term of a	ar^{n-1}	The nth term of 2, 10, 50, 250 Is
geometric sequence		
	where <i>a</i> is the first term and <i>r</i> is the common ratio	$2 \times 5^{n-1}$
nth term of a	1. Find the first and second differences.	Find the nth term of: 4, 7, 14, 25, 40
quadratic sequence	2. Halve the second difference and multiply this by n^2 .	A
	3. Substitute $n = 1,2,3,4$ into your expression so far.	Answer: Second difference = +4 \rightarrow nth term = $2n^2$
	4. Subtract this set of numbers from the corresponding terms in the sequence from the question.	Second difference = $+4 \rightarrow 100$ term = 2π
	5. Find the nth term of this set of numbers.	Sequence: 4, 7, 14, 25, 40
	 Combine the nth terms to find the overall nth term of 	$2n^2$ 2, 8, 18, 32, 50
	the quadratic sequence.	Difference: 2, -1, -4, -7, -10
	Substitute values in to check your nth term works for the sequence.	Nth term of this set of numbers is $-3n + 5$
		Overall nth term: $2n^2 - 3n + 5$
Triangular numbers	The sequence which comes from a pattern of dots that form	1 3 6 10
	a triangle.	
	1, 3, 6, 10, 15, 21	

HELSTON COMMUNITY COLLEGE

