Sequences

er pattern with a common difference . Iue in a sequence is called a term. which allows you to find the next term in a sequence now the previous term . which allows you to calculate the term that is in the ition of the sequence. bwn as the 'position-to-term' rule. to the position of a term in a sequence. d the difference . iltiply that by <i>n</i> .	2, 5, 8, 11 is a linear sequenceIn the sequence 2, 5, 8, 11, 8 is the third term of the sequence.First term is 2. Term-to-term rule is 'add 3'Sequence is: 2, 5, 8, 11nth term is $3n - 1$ The 100 th term is $3 \times 100 - 1 = 299$ Find the nth term of: 3, 7, 11, 15
how the previous term. which allows you to calculate the term that is in the ition of the sequence. hown as the 'position-to-term' rule. to the position of a term in a sequence. d the difference.	Sequence is: 2, 5, 8, 11 nth term is $3n - 1$ The 100 th term is $3 \times 100 - 1 = 299$
ition of the sequence. own as the 'position-to-term' rule. to the position of a term in a sequence. d the difference .	nth term is $3n - 1$ The 100 th term is $3 \times 100 - 1 = 299$
ition of the sequence. own as the 'position-to-term' rule. to the position of a term in a sequence. d the difference .	The 100 th term is $3 \times 100 - 1 = 299$
to the position of a term in a sequence. d the difference .	
d the difference .	Find the nth term of: 2, 7, 11, 15
d the difference .	Find the nth term of: 2 7 11 15
	1 ma the num term of 3, 7, 11, 15
 of a linear sequence 2. Multiply that by n. 3. Substitute n = 1 to find out what number you need to add or subtract to get the first number in the sequence. 	1. Difference is +4 2. Start with 4 <i>n</i>
	3. $4 \times 1 = 4$, so we need to subtract 1 to get 3. nth term = $4n - 1$
Fibonacci type A sequence where the next number is found by adding up sequences the previous two terms	The Fibonacci sequence is: 1,1,2,3,5,8,13,21,34
	An example of a Fibonacci-type sequence is: 4, 7, 11, 18, 29
Geometric Sequence A sequence of numbers where each term is found by multiplying the previous one by a number called the common ratio, r .	An example of a geometric sequence is: 2, 10, 50, 250 The common ratio is 5
	Another example of a geometric sequence is: $81, -27, 9, -3, 1 \dots$
	The common ratio is $-\frac{1}{3}$
nce of numbers where the second difference is t .	2 6 12 20 30 42 +4 +6 +8 +10 +12
atic sequence will have a n^2 term.	+2 +2 +2 +2
Triangular numbersThe sequence which comes from a pattern of dots that form a triangle.1, 3, 6, 10, 15, 21	1 3 6 10
	ing the previous one by a number called the n ratio, r. nce of numbers where the second difference is t. atic sequence will have a n^2 term. Junce which comes from a pattern of dots that form e.

HELSTON COMMUNITY COLLEGE