Topic/Skill	Definition/Tips	Example
1. Direct Proportion	If two quantities are in direct proportion, as one increases, the other increases by the same percentage. If y is directly proportional to x, this can be written as $\boldsymbol{y} \propto \boldsymbol{x}$ An equation of the form $\boldsymbol{y}=\boldsymbol{k} \boldsymbol{x}$ represents direct proportion, where k is the constant of proportionality.	
2. Inverse Proportion	If two quantities are inversely proportional, as one increases, the other decreases by the same percentage. If y is inversely proportional to x, this can be written as $\boldsymbol{y} \propto \frac{\mathbf{1}}{\boldsymbol{x}}$ An equation of the form $\boldsymbol{y}=\frac{\boldsymbol{k}}{\boldsymbol{x}}$ represents inverse proportion.	
3. Using proportionality formulae	Direct: $\mathbf{y}=\mathbf{k x}$ or $\mathbf{y} \propto \mathbf{x}$ Inverse: $\mathbf{y}=\frac{k}{x}$ or $\mathbf{y} \propto \frac{1}{x}$ 1. Solve to find k using the pair of values in the question. 2. Rewrite the equation using the k you have just found. 3. Substitute the other given value from the question in to the equation to find the missing value.	p is directly proportional to q . When $\mathrm{p}=12, \mathrm{q}=4$. Find p when $\mathrm{q}=20$. $\begin{aligned} & \text { 1. } \mathrm{p}=\mathrm{kq} \\ & 12=\mathrm{kx} 4 \\ & \text { so } \mathrm{k}=3 \end{aligned}$ 2. $p=3 q$ 3. $\mathrm{p}=3 \times 20=60$, so $\mathrm{p}=60$
4. Direct Proportion with powers	Graphs showing direct proportion can be written in the form $\boldsymbol{y}=\boldsymbol{k} \boldsymbol{x}^{\boldsymbol{n}}$ Direct proportion graphs will always start at the origin.	Direct Proportion Graphs
5. Inverse Proportion with powers	Graphs showing inverse proportion can be written in the form $\boldsymbol{y}=\frac{\boldsymbol{k}}{x^{n}}$ Inverse proportion graphs will never start at the origin.	

