

Physics 3: Particle M	odel of Matter
Section 1: Key Terms	
1 Density	How much mass a substance contains compared to its volume . Solids are usually dense because the particles are closely packed.
2 State of matter	The way in which the particles are arranged – solid, liquid or gas.
3 Change of state	When a substance changes from one state of matter to another (e.g. melting is the change from a solid to a liquid). Energy changes the state, not the temperature.
4 Physical change	A change that can be reversed to recover the original material. E.g. a change of state.
5 Chemical change	A change that creates new products. It cannot be revered. E.g. a chemical reaction.
6 Internal energy	The energy stored inside a system by the particles (atoms and molecules) that make up the system. Internal energy is the total kinetic energy and potential energy of all the particles .
7 Kinetic energy	Energy stored within moving objects (e.g. particles).
8 Potential energy	Energy stored in particles because of their position. The further apart particles are, the greater the potential energy.
9 Specific heat capacity	The specific heat capacity of a substance is the amount of energy required to raise the temperature of one kilogram of the substance by one degree Celsius .
10 Temperature	The average kinetic energy of the particles .
11 Specific latent heat	The amount of energy required to change the state of one kilogram of the substance with no change in temperature .
12 Latent heat of fusion	Energy required to change state from solid to liquid.
13 Latent heat of vaporisation	Energy required to change state from liquid to vapour.
14 Gas Pressure	The force exerted by gases on surface as the particles collide with it. As temperature increases, gas pressure increases if the volume stays constant.

Section 3: Explaining a heating curve		
25 Solid	Particles are closely packed, fixed and arranged in regular layers. As more energy is absorbed the kinetic energy and therefore the internal energy of the material increases.	
	Temperature doesn't change. Energy is used to weaken the forces between particles. As more energy is absorbed the potential energy and therefore the internal energy of the material increases.	
27 Liquid	Particles are touching but no longer arranged regularly. They are above to move. As more energy is absorbed the kinetic energy and therefore the internal energy of the material increases.	
28 Evaporation	Temperature doesn't change. Energy is used to weaken the forces between particles. As more energy is absorbed the potential energy and therefore the internal energy of the material increases.	
20 Gas	Particles move randomly. As more energy is absorbed the particles move more quickly and the temperature increases.	

22 Sublimation

Volume = $metres^{3}$ (m³)

