

Independent Events	The outcome of a previous event does not influence/affect the outcome of a second event.	An example of independent events could be replacing a counter in a bag after picking it.
Dependent Events	The outcome of a previous event does influence/affect the outcome of a second event.	An example of dependent events could be not replacing a counter in a bag after picking it. 'Without replacement'
Probability Notation	$\mathbf{P}(\mathbf{A})$ refers to the probability that event A will occur. $\mathbf{P}\left(\mathbf{A}^{\prime}\right)$ refers to the probability that event A will not occur. $\mathbf{P}(\mathbf{A} \cup \mathbf{B})$ refers to the probability that event A or B or both will occur. $\mathbf{P}(\mathbf{A} \cap \mathbf{B})$ refers to the probability that both events A and B will occur.	P (Red Queen) refers to the probability of picking a Red Queen from a pack of cards. $P($ Blue') refers to the probability that you do not pick Blue. $P($ Blonde \cup Right Handed) refers to the probability that you pick someone who is Blonde or Right Handed or both. $P($ Blonde \cap Right Handed) refers to the probability that you pick someone who is both Blonde and Right Handed.
Venn Diagram Notation	\in means 'element of a set' (a value in the set) \{ \} means the collection of values in the set. ξ means the 'universal set' (all the values to consider in the question) A^{\prime} means 'not in set A^{\prime} (called complement) $A \cup B$ means ' A or B or both' (called Union) $A \cap B$ means ' A and B (called Intersection)	Set A is the even numbers less than 10. $A=\{2,4,6,8\}$ Set B is the prime numbers less than 10. $B=\{2,3,5,7\}$ $A \cup B=\{2,3,4,5,6,7,8\}$ $A \cap B=\{2\}$
AND rule for Probability	When two events, A and B, are independent: $P(A \text { and } B)=P(A) \times P(B)$	What is the probability of rolling a 4 and flipping a Tails? $\begin{gathered} P(4 \text { and Tails })=P(4) \times P(\text { Tails }) \\ =\frac{1}{6} \times \frac{1}{2}=\frac{1}{12} \end{gathered}$
OR rule for Probability	When two events, A and B, are mutually exclusive: $P(A \text { or } B)=P(A)+P(B)$	What is the probability of rolling a 2 or rolling a 5 ? $\begin{aligned} & P(2 \text { or } 5)=P(2)+P(5) \\ & \quad=\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3} \end{aligned}$

