Maths Knowledge Organiser

Fue en la companya Transa	A alta anna alta colta a los de ferror el colta d		Finding Probabilities of Multiple		An avanual of index subsets as t
Frequency Tree	A diagram showing how information is	Wears glasses	Independent Events	The outcome of a previous event	An example of independent events
	categorised into various categories.			does not influence/affect the	could be <u>replacing</u> a counter in a bag
		BONS Does not wear glasses		outcome of a second event.	after picking it.
	The numbers at the ends of branches tells		Dependent Events	The outcome of a previous event	An example of dependent events could
	us how often something happened			does influence/affect the outcome	be not replacing a counter in a bag
	(frequency).	Ginis Wears glusse		of a second event.	after picking it.
					'Without replacement'
	The lines connected the numbers are called	Does not wear glasses	Probability Notation	P(A) refers to the probability that	P(Red Queen) refers to the probability
	branches.	- giasses		event A will occur.	of picking a Red Queen from a pack of
Sample Space Tree Diagrams	The set of all possible outcomes of an				cards.
	experiment.	+ 1 2 3 4 5 6			
	experiment.	1 2 3 4 5 6 7		P(A') refers to the probability that	P(Blue') refers to the probability that
		2 3 4 5 6 7 8			
		3 4 5 6 7 8 9		event A will <u>not</u> occur.	you do not pick Blue.
		4 5 6 7 8 9 10			
		5 6 7 8 9 10 11		$P(A \cup B)$ refers to the probability	P(Blonde U Right Handed) refers to the
				that event A <u>or</u> B <u>or</u> both will occur.	probability that you pick someone who
		6 7 8 9 10 11 12			is Blonde or Right Handed or both.
	Tree diagrams show all the possible	Bag A Bag B			
	outcomes of an event and calculate their	1red		$P(A \cap B)$ refers to the probability	P(Blonde ∩ Right Handed) refers to the
	probabilities.	3 100		that both events A and B will occur.	probability that you pick someone who
		$\frac{1}{\sqrt{red}}$ red			is both Blonde and Right Handed.
	All branches must add up to 1 when	5 2 black	Venn Diagram Notation	∈ means 'element of a set' (a value	Set A is the even numbers less than 10.
	adding downwards.	3 1	Ũ	in the set)	A = {2, 4, 6, 8}
	This is because the probability of			{ } means the collection of values in	
	something not happening is 1 minus the	4 state 3 red		the set.	Set B is the prime numbers less than
	probability that it does happen.	- black		ξ means the 'universal set ' (all the	10.
	probability that it does happen.	2 black		values to consider in the question)	$B = \{2, 3, 5, 7\}$
		3			$D = \{2, 3, 3, 7\}$
	Multiply going across a tree diagram.			A' means 'not in set A' (called	A ∪ B = {2, 3, 4, 5, 6, 7, 8}
				complement)	$A \cap B = \{2\}$
	Add going down a tree diagram.	$A \cup B$ $A \cap B$			$A \sqcap D = \{Z\}$
Venn Diagrams	A Venn Diagram shows the relationship	AVB		$A \cup B$ means 'A or B or both' (called	
	between a group of different things and	A B A B		Union)	
	how they overlap.			A ∩ B means 'A and B (called	
				Intersection)	
	You may be asked to shade Venn Diagrams		AND rule for Probability	When two events, A and B, are	What is the probability of rolling a 4
	as shown below and to the right.	$(A \cap B)'$ $(A \cup B)'$		independent:	and flipping a Tails?
		A B A B			
	$A \cup B$ $A \cap B$			$P(A \text{ and } B) = P(A) \times P(B)$	$P(4 and Tails) = P(4) \times P(Tails)$
	$A \xrightarrow{B} \zeta \qquad A \xrightarrow{B} \zeta$				
					$=\frac{1}{6}\times\frac{1}{2}=\frac{1}{12}$
		$A' \cap B$	OR rule for Probability	When two events, A and B, are	What is the probability of rolling a 2 or
		A B		mutually exclusive:	rolling a 5?
	The Union The Intersection 'A or B or Both' 'A and B'			P(A or B) = P(A) + P(B)	P(2 or 5) = P(2) + P(5)
		$A \cup B'$			= -+-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
		1		1	
		B			

